Parasitic Parameter Prediction for Planar Transformers Based on Neural Network

نویسندگان

چکیده

Abstract Parasitic parameters such as leakage inductance and distributed capacitance of planar transformers have a direct impact on the performance efficiency transformers. Traditional methods for parasitic parameter prediction are commonly based empirical formulas or simulation software, but they problems high computational complexity, time-consuming low accuracy. In this paper, method predicting multilayer perceptron (MLP) under specific winding structure is proposed, which can improve transformer design. The experiments demonstrate that model effectively predict inductance, capacitance, AC loss

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanofluid Thermal Conductivity Prediction Model Based on Artificial Neural Network

Heat transfer fluids have inherently low thermal conductivity that greatly limits the heat exchange efficiency. While the effectiveness of extending surfaces and redesigning heat exchange equipments to increase the heat transfer rate has reached a limit, many research activities have been carried out attempting to improve the thermal transport properties of the fluids by adding more thermally c...

متن کامل

Combining Neural Network with Genetic Algorithm for prediction of S4 Parameter using GPS measurement

  The ionospheric plasma bubbles cause unpredictable changes in the ionospheric electron density. These variations in the ionospheric layer can cause a phenomenon known as the ionospheric scintillation. Ionospheric scintillation could affect the phase and amplitude of the radio signals traveling through this medium. This phenomenon occurs frequently around the magnetic equator and in low latitu...

متن کامل

Traffic Prediction Based on Improved Neural Network

Artificial neural networks and genetic algorithms derived from the corresponding simulation of biology, anatomy. The paper analyzes the advantages and the disadvantages of the artificial neural networks and genetic algorithms. The artificial neural networks and genetic algorithms to be combine in the prediction model. This method is used to predict traffic volume in a road, the accuracy of fore...

متن کامل

a novel approach for discrimination magnetizing inrush current and internal fault in power transformers based on neural network

one of the major problems that may occur in the differential protection systems of power transformers is mal-operation of the protection relays in sake of internal fault detection, because of similarity between this current and inrush current. this paper presents a novel approach for discriminating inrush current from internal fault in power transformers based on improved gravitational search a...

متن کامل

Forecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique

Artificial neural network is considered one of the most efficient methods in processing huge data sets that can be analyzed computationally to reveal patterns, trends, prediction, forecasting etc. It has a great prospective in engineering as well as in medical applications. The present work employs artificial neural network-based curve fitting techniques in prediction and forecasting of the Cov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of physics

سال: 2023

ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']

DOI: https://doi.org/10.1088/1742-6596/2584/1/012083